On Efficient Estimation in Regression Models
نویسندگان
چکیده
منابع مشابه
An Efficient Estimation for Switching Regression Models
This paper investigates an efficient estimation method for a class of switching regressions based on the characteristic function (CF). We show that with the exponential weighting function, the CF based estimator can be achieved from minimizing a closed form distance measure. Due to the availability of the analytical structure of the asymptotic covariance, an iterative estimation procedure is de...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملAsymptotically Efficient Estimation of Linear Functionals in Inverse Regression Models
In this paper we will discuss a procedure to improve the usual estimator of a linear functional of the unknown regression function in inverse nonparametric regression models. In Klaassen et al. (2001) it has been proved that this traditional estimator is not asymptotically efficient (in the sense of the Hájek Le Cam convolution theorem) except, possibly, when the error distribution is normal. S...
متن کاملSemiparametric Efficient Estimation of Partially Linear Quantile Regression Models
Lee (2003) develops a √ n-consistent estimator of the parametric component of a partially linear quantile regression model, which is used to obtain his one-step semiparametric efficient estimator. As a result, how well the efficient estimator performs depends on the quality of the initial √ n-consistent estimator. In this paper, we aim to improve the small sample performance of the one-step eff...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1993
ISSN: 0090-5364
DOI: 10.1214/aos/1176349269